SURFACTANT EFFECTS ON HUMANS AND OTHER MAMMALS

THE SOAP AND DETERGENT ASSOCIATION SCIENTIFIC AND TECHNICAL REPORT NO. 4 NOVEMBER, 1966

TABLE OF CONTENTS

	'age
SUMMARY	1
INTRODUCTION	1
EXPOSURE LEVELS IN OUR ENVIRONMENT	2
ACUTE TOXICITY	3
CHRONIC TOXICITY	3
SOLUBILIZATION AND SYNERGY	5
a. Cancer	
b. Infection, Toxins and Bacterial Travel	7
c. Promotion of Absorption	7
ABBREVIATIONS	8
TABLE 1 – ACUTE ORAL TOXICITY OF SURFACTANTS TO MAMMALS	9
TABLE 2 - SURFACTANT FEEDING EXPERIMENTS - HUMANS	12
TABLE 3 - SURFACTANT FEEDING EXPERIMENTS - ANIMALS	13
TABLE 4 – SURFACTANT FEEDING STUDIES – FERTILITY AND REPRODUCTION	17
FERTILITY AND REPRODUCTION	17
TABLE 5 – SURFACTANTS AND INFECTION	18
TABLE 6 – SURFACTANTS AND GASTRO-INTESTINAL ABSORPTION	19
REFERENCES	20

THE SOAP AND DETERGENT ASSOCIATION 485 Madison Avenue, New York, New York 10022

SURFACTANT EFFECTS ON HUMANS AND OTHER MAMMALS

BY R. D. SWISHER, Ph.D.

R. D. Swisher is a Senior Group Leader in the Research Department of the Inorganic Chemicals Division of Monsanto Company, where he is a practicing organic chemist. His major research interests have been in the fields of sulfonation, dye intermediates, and surfactants, with particular emphasis on surfactant biodegradation since 1956. He received his B.S., M.S. and Ph.D. degrees at the University of Michigan.

FOREWORD

Collecting, organizing, and interpreting the toxicity data on the surfactants certainly in our environment and possibly included in traces in our diet or water supply is such an obviously timely contribution we can only feel grateful to the author for his labors buttressed by data garnered from over 140 references. The possible hazard to the human population is estimated from summaries of (a) the acute toxicities of more than 30 surfactants; (b) the effects on human volunteers in 7 studies; (c) the chronic toxicity studies of more than a score of surfactants consumed by animals in feeding periods of a few days to 2 years; (d) the 10 fertility and reproduction studies in animals; (e) the investigations of the role of surfactants in tumor production, in infections, and in the promotion of intestinal absorption processes. As the basis for comparisons, careful estimates of average human consumption of surfactants are made. The environmental hazard from surfactants is shown to be reassuringly negligible.

HAROLD C. HODGE
Professor of Pharmacology
School of Medicine & Dentistry
The University of Rochester

SURFACTANT EFFECTS ON HUMANS AND OTHER MAMMALS

R. D. SWISHER, Ph.D.

Research Department

Inorganic Chemicals Division - Monsanto Company

Summary

This review is a guide to the original scientific literature (through 1965) pertinent to possible effects of our exposure to the trace amounts of surfactants which may enter our environment via sewage. The data show beyond any reasonable question that the margin of safety is very great, and there is no indication that hazard exists.

The review is divided into the following sections:

- 1. *Introduction*. Background of the problem and scope of the review.
- 2. Exposure Levels in Our Environment. The amounts of surfactant which might be ingested by the individual in the normal course of events.
- 3. Acute Toxicity. Lethal dose data for surfactants in animals.
- 4. Chronic Toxicity. Absence of toxic effects of surfactants upon prolonged feeding below the lethal dose limit, in man and in up to three generations of animals.
- 5. Solubilization and Synergy. Experiments indicating the negligible degree of hazard associated with surfactants at environmental levels through promotion of (a) activity of carcinogenic substances, (b) bacterial or viral infectivity, or (c) intestinal absorption.

1. Introduction

A surfactant intended for commercial sale, either as such or as a component in a detergent or cleaning formulation,

should first undergo exhaustive tests to establish that there is no direct hazard to the health of the user. The detergent industry is particularly careful in this regard because many of its products come into intimate contact with the skin, and are also used in the washing of wearing apparel, food, and food utensils.

In recent years a whole additional area of potential hazard has come into view as a consequence of increasing population densities: contamination of water supplies by sewage and other wastewaters. One of the minor but (by virtue of its foaming properties) more obvious components of sewage was tetrapropylene-derived alkylbenzene sulfonate (tpABS), the surfactant in major use during the years 1950-1964. Detergents based on this material have been in almost universal use in our nation's households, so that it has been present in our domestic sewage at levels averaging around 10 parts per million (ppm). Most of our sewage ultimately finds its way into rivers or ground waters. Our rivers have averaged perhaps 0.1 ppm or less of tpABS except in the cases where they are made up largely of raw or treated sewage, where they have occasionally run up to 1 ppm or higher. Ground waters have ranged from zero to several parts per million, depending upon the proximity to sewage entry points.

Use of tpABS was discontinued by the United States detergent industry in mid-1965 in favor of linear alkylate sulfonate (LAS) and other surfactants more easily decomposed by bacterial action. Thus surfactants originating from detergents

will be a diminishing factor in the problems of sewage contamination still facing us. Nevertheless it seems appropriate at this time to bring together data relevant to the margin of safety which we can expect.

In this particular context we will primarily consider the anionic and the nonionic surfactants. Cationics are used in relatively small quantities, mainly as bactericides and sanitizers rather than as detergents, and the quantity appearing in wastewaters is completely insignificant. Furthermore, cationic surfactants are neutralized, chemically and functionally, by an equivalent amount of anionic surfactant, so that they do not exist in free form in the presence of excess anionic.

Anionic and nonionic surfactants are relatively non-toxic to mammals, falling in the same general range as sodium chloride or sodium bicarbonate. Prolonged ingestion of hundreds or thousands of milligrams per day has been found harmless to humans, thousands of times the amounts which would enter through use of municipal drinking water where tpABS levels have averaged well below 0.1 ppm (one-tenth of a milligram per liter).

The references forming the basis for the above generalization are listed in full in the following sections. Tabulations of much of the data is beyond our scope, because a multitude of experimental details and variables and qualifying circumstances would have to be enumerated for intelligent use and comparison of the exact numerical results; direct consultation of the original publication is advisable. In some cases complete information is not given even in the original, particularly with respect to the exact chemical nature or structure of the surfactant used.

Literature coverage in this survey is intended to be reasonably complete. Two main handicaps were encountered: first,

it is not possible to define rigidly the exact limits of the subject matter; and second, the broad interdisciplinary interest has resulted in papers scattered through a multitude of peripheral journals.

2. Exposure Levels in Our Environment

To establish a frame of reference for the toxicity data which follow, we shall first consider the typical amount of surfactant of detergent origin ingested by the average person. The indications are that this is somewhere in the vicinity of one milligram per day.

Municipal drinking waters of 32 U.S. cities have shown tpABS levels from zero to 0.14 ppm, averaging about 0.025 ppm (AASGP 1961). An upper limit of 0.5 ppm for anionic surfactant content was established for aesthetic (rather than toxicity) reasons in the U.S. Public Health Service Drinking Water Standards (1962), although well water may occasionally be grossly contaminated with sewage and show tpABS levels of 1 ppm or more. Assuming that a person drinks two liters of water per day, the tpABS intake would be 0.05 milligrams from the average municipal water, or 1 milligrain at the upper limit of the USPHS Standards.

Krüger (1960, p. 291) reports that intake of surfactant through imperfect rinsing of dishes and utensils has been estimated at around 100 milligrams per year, or 0.3 mg. per day. A study by the British Committee on Synthetic Detergents indicated that unrinsed vessels imparted 0.2 to 1 ppm of surfactant to the water when refilled (Ministry of Housing, 1956, p. 10). Assuming a water use of 2 liters per day this would correspond to 0.4 to 2 milligrams per day. Borneff (1957, p. 592) estimates the average intake as about 0.01 milligram per kilogram per day, or 0.5 to 1 milligram per person. Measurements by Wedell (1964)

led to a value of about 0.4 milligrams per day.

Use of tpABS for washing foods has been approved by the U.S. Food and Drug Administration (1964a). However, published data are scanty on amounts of surfactant residues remaining after rinsing, presumably because this is not a common household practice. Shinoda (1962) reports 0.1 to 0.2 milligrams of tpABS remaining per 100 grams of cabbage, and if we assume this to be typical we again may estimate a daily intake in the order of magnitude of one milligram.

Another entry route for surfactants into the human system is via toothpaste. The usual formulation contains 1-2% of surfactant, which would amount to perhaps 10-20 milligrams per use. If 1-2% of this is swallowed or absorbed that would amount to 0.1 to 0.4 milligrams.

Summing up all of these, we can estimate that the average intake of surfactants of detergent origin may range between about 0.3 and 3 milligrams per person per day.

There is another class of surfactant compounds which has no detergency properties and does not properly fall into the scope of the present discussion because they are not used in commercial detergent formulations. These are the emulsifiers used in certain foods at levels up to around 0.5%. Pratt (1952) has estimated an average intake around 500 milligrams per person per day; their harmless nature has, of course, been demonstrated (page 5).

3. Acute Toxicity

The toxic level of a substance for human beings is ordinarily estimated from the results of animal experimentation. Table 1 shows data on the acute oral toxicity of various surfactants when fed to various mammals, expressed as the LD_{50} , the lethal dose of substance per kilogram of body weight which in a single administra-

tion will on the average kill half of the animals in the test group. Such data are only semi-quantitative, depending on many experimental variables as discussed by Treon (1962) and Griffith (1964). Furthermore, extrapolation from other animals to human beings introduces some further uncertainty; for example see Brodie (1965). Nevertheless, extreme precision is unnecessary for our present purpose, since it will be evident that the margin of safety is very great when we are considering environmental exposures to surfactants.

For example, the first section of Table 1 shows that the LD_{50} of alkylbenzene sulfonates is in the range of 500 to 3000 milligrams per kilogram. The lower figure corresponds to a dose of about one ounce for an individual weighing 120 pounds, some 25,000 times greater than the daily intake estimated in Section 2. The higher figure is in the same order of magnitude as sodium chloride (3100 mg./kg.) or sodium bicarbonate (4300 mg./kg.) as reported by Snyder (1964).

Other anionic surfactants, the sulfates and sulfonates listed in Table 1, fall in this same toxicity range. Some of the nonionics do also, while others exhibit still lower toxicity. The cationic surfactants listed in the table likewise overlap the anionics, but they are in general somewhat more toxic. The only human fatality that has been reported resulted from ingestion of a cationic — less than one ounce of an alcoholic disinfectant containing 10% of a quaternary ammonium derivative. It was determined that alcohol increased the toxicity of the cationic (Adelson, 1952).

4. Chronic Toxicity

Although the probability of acute poisoning by detergent type surfactants is vanishingly small, prolonged ingestion of smaller amounts of surfactants should also be examined for undesirable effects.

Controlled observations upon humans are possible at levels below the acute toxicity limit, and the potential usefulness of surfactants in medicine has led to many investigations, such as those reviewed by Borneff (1957). Table 2 lists several experiments in which surfactants were fed to human volunteers over long periods at levels 100 to 10,000 times as great as the 1 milligram per day estimated normal ingestion. No harmful effects could be found as judged by the many criteria listed in Table 2.

Exposure of workmen in surfactant manufacturing plants over long periods of time has also been cited as evidence for their lack of toxicity, for example by Benaglia (1943) for dialkyl sulfosuccinate. Sakabe (1962) measured the amount of tpABS dust inhaled by workmen as about 4.5 milligrams per hour; no clinical effects were found, although skin irritation did result from the prolonged external contact.

The use of surfactants at extremely high levels in medicated sprays or aerosols has been examined. Hall (1950) studied four different anionic surfactants and found that aerosols produced from water containing 1000 ppm of surfactant had no adverse effects on guinea pigs when inhaled 8 hours per day for 6 days, but that at 5,000 ppm there was difficulty in breathing and at 10,000 ppm some deaths resulted. Histological changes in the lungs were noted at the two higher levels. Hall's four anionics were two alkyl sulfates, an alkylaryl sulfonate and a dialkyl sulfosuccinate. Grubb (1960) reported that lauryl alcohol EO(7) showed no harmful effects when inhaled from a vaporizer by rats or humans.

Numerous prolonged animal feeding experiments are listed in Table 3. Perhaps the most significant are the two-year rat studies (which encompass the entire lifetime of the experimental animals). Typical results include those of Bornmann (1963) who administered both tpABS

and LAS in the drinking water at 100 ppm. The daily consumption of water was 20-30 ml. of water per animal, making the ABS dose 2-3 mg. This is the same order of magnitude as the estimated daily human intake, but since a rat weighs half a kilogram or less the rat dose per kilogram was more than 100 times the human. Tusing (1960) and Paynter (1960) used dose levels up to ten times higher yet. All of these studies showed no significant difference between the alkylbenzene sulfonate fed animals and the controls. Similar results were obtained in most of the other studies in Table 3. Even in the case of the cationic surfactants no effects were noted except for doses very much higher than can be anticipated in the general human environment.

Daily doses of alkylbenzene sulfonates as high as 50% of the LD_{50} were administered to rats by Hine (1953) up to 45 days with no noticeable effect, and up to 10% by Garshenin (1963) with little effect. On the other hand, Hopper (1949) tested 17 different surfactants at 10% of the LD_{50} in daily doses and found significant mortality for many of them within a month. Needless to say, these exposures are many orders of magnitude higher than found in our environment

In addition to tests over one lifetime, experiments have been carried still further to determine any possible effect upon reproduction or offspring. Table 4 lists a number of studies which show that alkylbenzene sulfonates and several other surfactants in the diet of rats had no detectable effects at least into the second generation of offspring. Petri (1961) mentions a harmful effect upon pregnant guinea pigs when their drinking water contained 2% (20,000 ppm) of various unspecified detergents; details of this work do not appear to have been published but its significance in terms of actual environmental exposures is questionable.

In addition to the long term feeding studies on mammals listed in Table 3, there are many papers in the literature on the use of surfactants at the 0.1 to 1% level in the diet of poultry to improve their rate of growth and efficiency of feed utilization; for example see Bolton (1961), Havermann (1957), Knauth (1964), Ney (1954), Ringrose (1959), Stern (1953). Although there is considerable disagreement as to achieving the desired effects, there is no indication that surfactants are harmful to the birds at these relatively high levels.

Certain nonionic products have been used for many years as food additives to impart a variety of desirable properties, and much of the toxicity data on nonionics were originally determined with such use in mind. Not having been designed with good washing and cleaning properties, in general these products are not used in commercial detergents. The Food Protection Committee of the National Research Council (1956) has reviewed surfactants as food additives with the conclusion that surface activity itself is not a measure of toxicity and that the safety of each surfactant for use in food must be determined separately as with every other material regardless of type. Keyworth (1956) has also contributed a review of this subject. Recent approvals by the U.S. Food and Drug Administration (1960, 1964b, c) include the use of fatty acyl sorbitan ethoxylates at levels up to about 0.5% in certain foods and beverages.

5. Solubilization and Synergy

In addition to the preceding data which show quite conclusively that surfactants themselves present no particular hazard to mammals, one further area has been studied: can surfactants enhance the activity of other potentially harmful agents in our environment? Such effects might arise (1) simply from their surfactant properties which conceivably might in-

fluence the solubility, dispersion, mobility or penetration of other materials, or (2) from synergy, the enhancement (or repression) of activity of two or more compounds together compared to the activity of either alone.

a. Cancer

Borneff (1959a) has discussed the possible interaction of surfactants with the carcinogenic hydrocarbons which may be present in soot, engine exhaust fumes, asphalt and the like, suggesting that surfactants might increase the concentration of such materials dissolved in water supplies. Subsequently, Borneff (1960, 1963) experimentally demonstrated the incidence of stomach tumors, including carcinomas, in mice which had been given water containing 3% (30,000 ppm) detergent and 10 ppm of a carcinogenic hydrocarbon (benzopyrene) in their drinking water for most of their lifetime, about 400 days. When the benzopyrene was given in the food the incidence of tumors was considerably lower and there were no carcinomas; here the presence or absence of detergent in the water made no difference. Without benzopyrene but with detergent the total tumor incidence was still lower (again no carcinomas); this group showed a somewhat higher incidence of hyperkeratosis and somewhat lower incidence of lung adenoma than did the corresponding controls. The detergent used was a proprietary formulation, not characterized as to chemical nature or content of surfactant. Borneff (1959b) elsewhere stated that it contained both anionic and nonionic surfactants.

Borneff concluded in view of these results that the household use of and resulting ingestion of detergents presents no hazard, either from enhancement of carcinogenic action of other materials in the diet or from toxicity of the detergent itself. His question, not completely answered in this study, as to whether

drinking water made from detergent-containing river water presents a hazard has been subsequently answered. He recognized that the solubilization of carcinogenic hydrocarbons should not occur at surfactant concentrations found in sewage and rivers since these are far below the critical micelle concentration. Experimental evidence has since been presented by Böhm-Gössl (1965) for benzopyrene. Its solubility in water is well below 0.01 ppm and remains at that level in the presence of increasing amounts of tpABS or LAS up to above the critical micelle concentration. Only when the surfactant concentration exceeds about 300 ppm in hard water or 500 ppm in distilled water does solubilization begin to occur. Thus although Borneff was able to dissolve 10 ppm of benzopyrene in his 30,000 ppm detergent water for his feeding experiments, it is evident that this could not have been accomplished with surfactant concentrations of 1-10 ppm and that the hazard from this source is negligible.

Borneff (1960) suggested further that if the solubilization hazard does indeed exist, the preferred way to eliminate it would be the development of biodegradable surfactants by the detergent industry. As indicated in Section 1, this has now been accomplished.

Not only is the danger of enhancement negligible, as suggested by the above work; there is indeed some indication that at the same high surfactant levels used in the other studies, an actual inhibiting action may be exerted. Hodes (1960) reported growth inhibition of Ehrlich ascites tumor cells caused by in vitro treatment with sodium lauryl sulfate or with a nonylphenol polyethoxylate prior to inoculation into mice. Surfactant concentrations were not specified but were presumably in the range of 1000-5000 ppm judging by other work cited. Experiments with the cationic lauryl pyridinium chloride were inconclusive

because the animals died before tumor growth occurred. Unfortunately, there was no inhibition of tumor growth when untreated cells were injected, followed a week later by injection of surfactant. A similar reduction of infectivity was noted by Guerritore (1959) in Rous sarcoma extracts upon addition of sodium dodecyl sulfate.

Although it does not fall directly within the scope of this review because unrelated to sewage-borne waste detergents and because it does not involve detergent type surfactants, one other area of cancer research may be mentioned briefly. Certain materials exhibit a tumor-promoting action, although not tumorigenic themselves. That is, continued application to the skin will cause the development of tumors in animals which have previously been treated with a small dose of carcinogenic material, insufficient to cause tumors unaided. This phenomenon is not a causative factor in our environment because repeated applications of massive amounts of the tumor promoter are required for its action to be exhibited; its major significance is that it provides another research tool useful in developing an understanding of the fundamental biochemical principles and processes of cancer origin and development.

In his review of tumor-promotion, Setälä (1961) points out that there is a whole spectrum of such agents now known, and that new ones are being continually discovered. One of the earliest known was oleic acid, and one of the most useful is a surfactant, a fatty acyl sorbitan ethoxylate containing about 20 EO units. The irrelevance of these tumorpromoting properties to hazards in ordinary use has been pointed out by Shubik (1958b), Della Porta (1960). Saffiotti (1963) and Poel (1963) (in fact Poel was unable to induce tumors at all), and is attested by the continued approval of use of the fatty acyl sorbitan ethoxylates as food additives given by the U.S.

Food and Drug Administration (1960, 1964b, c).

Shubik (1958a) examined two alkylbenzene sulfonates and three types of nonionic surfactant and found no tumorpromotion by any of them, and Opdyke (1964) reported absence of tumor-promotion by a detergent formulation containing 20% tpABS. This is consistent with the view expressed by Setälä (1961) that surface activity has no necessary relationship with tumor-promoting properties. Saffiotti (1962) reported that commercial alkylbenzenes, alkylbenzene sulfonates and petroleum ether extracts of the sulfonates were themselves all without carcinogenic activity, but that the unsulfonated alkylbenzenes did have a small degree of tumor-promoting activity when applied in conjunction with a carcinogen. Tusing (1962) examined two other anionic surfactants for skin tumorigenicity in mice, also with negative results.

Altogether the evidence is quite conclusive that environmental exposure to surfactants introduces no cancer hazards.

b. Infections, Toxins and Bacterial Travel

It has been found that surfactants do not aid bacteria or viruses in penetrating body membranes or other defenses against infection, despite their wetting and dispersing powers. This question has been investigated by Borneff for several infective agents as tabulated in Table 5. The first two entries in the table indicate some infections, but this was attributed to the general poor health of the animals caused by the high levels of surfactant fed rather than to any promoting activity of the surfactant. At the lower levels, still much higher than found in the normal human environment, no differences in infectivity were found between the surfactant-fed animals and the controls.

Gershenfeld (1941) investigated the influence of surfactants upon antiseptics

in the protection of rabbits against infection by Staphylococcus aureus culture applied in skin puncture wounds. Addition of 10,000 ppm of surfactant (several dozen varieties, most of them anionic sulfates or sulfonates) had no effect, either positive or negative, upon infection or healing of the wound. (Nor did the antiseptics themselves; all wounds, with or without antiseptic or surfactant, healed in the same period of time and without infection.)

Bacterial toxins from many species are inactivated by natural and synthetic surfactants (Glassman, 1948). For example, Macfarlane (1941) found that 250-2500 ppm solutions of sodium dodecvl sulfate inhibited the activity of Clostridium welchii toxin to the extent of 80-100%, and Glassman (1950) inactivated type B botulinum toxin with either anionic or cationic, but not nonionic, surfactants. One exception has been noted by Pannell (1955), who reported that 5000 ppm solutions of several anionics and cationics enhanced several fold the toxicity of plague toxin (from Pasteurella pestis), as determined by injection into mice. Several nonionics were inactive. The concentrations and other conditions, for either enhancement or inactivation, are of course not at all pertinent to the environmental exposures which are under consideration in this review.

Surfactants do not facilitate the movement of bacteria through soil, and hence do not influence the spread of infections via groundwater. This question was investigated by Robeck (1962), who found that tpABS at 10 ppm had no influence on the travel of coliform bacteria through soil.

c. Promotion of Absorption

Woodard (1945) reported that various anionic surfactants "when reasonable concentrations were used" had no influence on intestinal absorption of glucose, nor on the acute toxicity of ethanol,

chloracetic acid or hydroquinone. At higher concentrations, very much higher than encountered in our environment, Table 6 indicates that surfactants may promote the absorption of various materials through the walls of the gastrointestinal tract. This may arise in part from supplementing the body's own surfactants,

the bile acids, but still does not seem to be entirely a consequence of surface activity per se. It has been applied to improving the efficiency of nutrition and medication mentioned above (pp. 4, 5), but cannot be considered as contributing to any environmental hazard.

ABBREVIATIONS

- ABS Alkylbenzene sulfonate. This is properly a generic term covering any benzene sulfonate with alkyl substituents. The term is used in the field of detergent technology in a more restricted sense to designate those with detergent or surfactant properties, for which the alkyl group is usually in the range from 10 to 15 carbon atoms. It has often been improperly used without qualifying modifier to designate one specific type of ABS, that derived from tetrapropylene.
- tpABS ABS in which the alkyl group is derived from tetrapropylene.
- LAS Linear alkylate sulfonate. ABS in which the alkyl groups are linear, ordinarily in the range from 10 to 15 carbon atoms.
- ppm parts per million. One milligram per liter of water is almost exactly one part per million, and the terms are used interchangeably in this review.
- EO used here to indicate ethylene oxide condensates in which the numerical designation indicates mols of EO per mol of base.

TABLE 1
Acute Oral Toxicity of Surfactants to Mammals

	LD ₅₀		
Surfactant	mg/kg	Animal	Reference
ALKYLBENZENE SULFON	IATE (Note 1)		
tpABS	1220	Rat	Bornmann 1961
LAS	1260	Rat	Bornmann 1961
LAS	2500	Rat	Cabejszek 1963
	2200	Rat	Drachev 1965
Dodecylbenzene	2300	Rat	Drachev 1965
Dodocyno	2300	Rat	Garshenin 1963
	2000	Mouse	Hopper 1949
Decylbenzene	2100	Mouse	Hopper 1949
200,10	2000	Mouse	Hine 1953
	2320	Rat	Hine 1953
	1130	Hamster	Hine 1953
	1730	Rabbit	Hine 1953
	1400	Mouse	Okahara 1963
(Note 2)	1400	Rat	Olson 1962
tpABS	520	Rat-	Oser 1965
LAS	650	Rat	Oser 1965
	1400	Rat	Smyth 1941
(Note 3)	2200-3200	Rat	Snyder 1964
(Note 3)	4600	Mouse	Snyder 1964
	1500	Rat	Woodard 1945
	2800	Mouse	Woodard 1945
Decylbenzene	2000	Mouse	Woodard 1945
ALKYL SULFATE			
Lauryl	1300	Rat	Olson 1962
Lauryl	2730	Rat	Smyth 1941
Lauryl	1000	Rat	Woodard 1945
2-Ethylhexyl	4125	Rat	Smyth 1941
2-Ethylhexyl	1520	Guinea pig	Smyth 1941
7-Et-2-Me-undecyl-4	1250	Rat	Smyth 1941
7-Et-2-Me-undecyl-4	650	Guinea pig	Smyth 1941
3, 9-diEt-tridecyl-6	1430	Rat	Smyth 1941
3, 9-diEt-tridecyl-6	425	Guinea pig	Smyth 1941
SULFATED NONIONIC			
Lauryl alcohol EO (3)	1820	Rat	Tusing 1962
Octylphenol EO	3700-5400	Rat	Finnegan 1953
MISCELLANEOUS SULFON	IATES		
Alkane	2700	Rat	Drachev 1965
Alkane	3000	Rat	Garshenin 1963
Hydrocarbon	4000+	Rat	Woodard 1945
Lauryl glyceryl ether	1820	Rat	Tusing 1962

TABLE 1 - (0	Continued)
--------------	------------

Surfactant	LD ₅₀ mg/kg	Animal	Reference
Oleoyl methyl tauride	6600	Mouse	Hopper 1949
Oleoyl methyl tauride	4000 +	Rat	Woodard 1945
Oleoyl methyl tauride	6300	Mouse	Woodard 1945
Isopropylnaphthalene	1900	Mouse	Hopper 1949
Butyl biphenyl	3400	Mouse	Hopper 1949
Butyl phenylphenol	2200-3800	Mouse	Hopper 1949
Ethyl phenylphenol	2000	Rat	Woodard 1945
Dodecyl diphenyl ether	700	Rat	Olson 1962
Alkylarylamine	2800	Mouse	Woodard 1945
Dioctyl succinate	4800	Mouse	Hopper 1949
Dioctyl succinate	1900	Rat	Olson 1962
Octylphenol EO (Note 4)	4900	Rat	Finnegan 1953
NONIONIC			
Stearoyl EO (8)	20,000-	Hamster	Eagle 1956
	27,000		
Stearoyl EO (8)	53,000-	Rat	Eagle 1956
	64,000		
Stearoyl EO (8)	12,000+	Rabbit	Eagle 1956
Fatty acyl EO	25,000+	Mouse	Hopper 1949
Lauryl alcohol EO (4)	5000-7600	Mouse	Treon 1962
Lauryl alcohol EO (4)	8600	Rat	Treon 1962
Lauryl alcohol EO (7)	1170	Mouse	Grubb 1960
Lauryl acohol EO (7)	4150	Rat	Grubb 1960
Lauryl alcohol EO (9)	3300	Mouse	Berberian 1965
Lauryl alcohol EO (23)	3500	Mouse	Treon 1962
Lauryl alcohol EO (23)	8600-9350	Rat	Treon 1962
Stearyl alcohol EO (2)	25,000+	Rat	Treon 1965
Stearyl alcohol EO (10)	2900	Rat	Treon 1965
Stearyl alcohol EO (20)	1900	Rat	Treon 1965
Oleyl alcohol EO (2)	25,800	Rat	Treon 1965
Oleyl alcohol EO (10)	2700	Rat	Treon 1965
Oleyl alcohol EO (20)	2800	Rat	Treon 1965
Fatty acyl sorbitan EO (20)	37,000-	Rat	Eagle 1956
	60,000+		
Fatty acyl sorbitan EO (20)	18,000	Hamster	Eagle 1956
Fatty acyl sorbitan EO (20)	25,000+	Mouse	Hopper 1949
Fatty acyl sorbitan EO (20)	20,000+	Rat	Krantz 1951
Fatty acyl sorbitan EO (20)	20,000+	Rat	Treon 1965
Octyl phenol EO (1)	7000	Rat	Finnegan 1953
Octyl phenol EO (3)	4000	Rat	Finnegan 1953
Octyl phenol EO (5)	3800	Rat	Finnegan 1953
Octyl phenol EO (8-10)	1800	Rat	Finnegan 1953
Octyl phenol EO (12-13)	1900	Rat	Finnegan 1953
Octyl phenol EO (16)	2800	Rat	Larson 1963
Octyl phenol EO (20)	3600	Rat	Larson 1963

TABLE 1 - (Continued)

Surfactant	LD _{so} mg/kg	Animal	Reference
Octyl phenol EO (30)	21,000	Rat	Larson 1963
Octyl phenol EO (40)	28,000+	Rat	Larson 1963
Nonyl phenol EO (9-10)	1600	Rat	Olson 1962
Lauric diethanolamide	2700	Rat	Olson 1962
CATIONIC			
Quaternary ammonium	235	Rat	Alfredson 1951
Quaternary ammonium	390-1000	Rat	Finnegan 1953, 1954
Quaternary ammonium	340-2000	Mouse	Hopper 1949
Quaternary (Note 5)	230-730	Rat	Shelanski 1949
Quaternary (Note 5)	160-315	Guinea pig	Shelanski 1949
Quaternary ammonium	410-1600	Rat	Treon 1962
Quaternary ammonium	350	Rat	Woodard 1945
Quaternary pyridinium	470-2500+	Mouse	Hopper 1949
Quaternary pyridinium	200-250	Rat	Nelson 1946
Quaternary pyridinium	230	Rat	Shelanski 1949
Quaternary pyridinium	200	Guinea pig	Shelanski 1949
Quaternary pyridinium	400+	Rabbit	Warren 1942
Lauryl imidazoline	3200	Rat	Olson 1962

- Note 1. Exact chemical structure of alkylbenzene sulfonate often unspecified; in such cases probably derived from kerosene or from tetrapropylene.
- Note 2. Triethanolamine salt.
- Note 3. Detergent formulation containing 20% surfactant.
- Note 4. Octyl phenol ethoxylate sulfonate.
- Note 5. Ammonium and pyridinium.

TABLE 2
Surfactant Feeding Experiments – Humans

Surfactant	Dose, mg/day	Duration	No. Subjects	(Note 1) Effect	Reference
ANIONIC					
Alkyl aryl sulfonate	100	4 mo.	6	0	Freeman 1945
Alkyl sulfate	1000	8 wk.	1	0	Fogelson 1944
Alkyl sulfate	1000	30 d.	34	0	Fogelson 1944
Alkyl sulfate	6000-9000	25-38 d.	4	0	Kirsner 1944
Hexadecyl sulfate	3600	15-80 d.	18	o, x	Prudden 1950
NONIONIC					
Stearoyl EO (40)	4500-6000	12 d.	8	0	Culver 1951
Oleoyl sorbitan	4500-15,000	½-9 mo.	2+	0	Jones 1948
EO (20) Oleoyl sorbitan	4500-6000	1-4 yr.	100+	o	Krantz 1951
EO (20)					

Note 1. o = no deleterious effects attributable to the surfactant.

x = no serious effects attributable to the surfactant.

Effects judged on the basis of such considerations as subject's feelings, body weight, metabolic rate, blood picture, liver function and kidney function. Tests included blood pressure; red and white cell count; hemoglobin; blood calcium, phosphorus, vitamin A, urea nitrogen, non protein nitrogen; serum albumin, globulin, bilirubin, cholesterol, cholesterol esters; differential blood smear; prothrombin time; intravenous hippuric acid test; cephalin flocculation; bromsulfalein retention; thymol turbidity; kidney concentrating action; urea clearance test; urine albumin; fecal fat, nitrogen.

TABLE 3
Surfactant Feeding Experiments — Animals

Surfactant	Animal	Dose (Note 1)	Duration	Effect (Note 2)	Reference
ALKYLBENZENE	SULFONATE	E (Note 3)			
	Pig	2000 ppm-food	_	O	Beeson 1953
tpABS	Rat	2-3 mg/d	2 yr.	O	Bornmann 1963
LAS	Rat	2-3 mg/d	2 yr.	O	Bornmann 1963
	Rat	100 mg/kg/d	_	O	Cabejszek 1963
	Rat	10,000 ppm-food	4 mo.	O	Fitzhugh 1948
	Dog	80 mg/kg/d	6 mo.	O	Freeman 1945
	Rat	5000 ppm-food	65 d	O	Freeman 1945
	Rat	$0.1 \mathrm{LD}_{50}/\mathrm{day}$	45 d	X	Garshenin 1963
(Note 4)	Pig	9000 mg/day	206 d	O	Havermann 1954
	Rat	20 ppm-food	6 mo.	0	Hine 1953
	Rat	$0.5 LD_{50}/day$	45 d	O	Hine 1953
	Rabbit	100 mg/day	20 d	X	Hueper 1944
C_6, C_{10}, C_{12} alky	1 Rat, dog	5000 ppm-food	90 d	0	Kay 1965
tpABS	Dog	5000 ppm-food	2 yr.	O	K ay 1965
LAS	Rat	5000 ppm-food	90 d	O	Kay 1965
	Rat	30 mg/kg/d	6 mo.	0	Okahara 1963
tpABS	Rat	250 mg/kg/d	12 wk.	O	Oser 1965
LAS	Rat	250 mg/kg/d	12 wk.	O	Oser 1965
tpABS	Rat	2000 ppm-food	2 yr.	O	Paynter 1960
	Pig	2600 ppm-food	_	O	Perry 1953
	Rat	5000 ppm-food	13 wk.	O	Sanz Ibañez 1964
(Note 5)	Rat	5000 ppm-food	2 yr.	0	Snyder 1964
tpABS	Rat	5000 ppm-food	2 yr.	O	Tusing 1960
	G. pig	2000 ppm-water	180 d.	O	Woodard 1945
ALKYL SULFATE					
Lauryl	Rat	30 mg/day	160 d.	O	Epstein 1939
Lauryl	Rat	10,000 ppm-food	2 yr.	O	Fitzhugh 1948
Lauryl	Dog	135 mg/kg/day	10 mo.	O	Fogelson 1944
Lauryl	Rat	60 mg/day	5 wk.	O	Hatton 1940
Lauryl	G. pig	2000 ppm-water	180 d.	O	Woodard 1945
2-Ethylhexyl	Rat	175 mg/kg/day	30 d.	O	Smyth 1941
2-Ethylhexyl	Rabbit	100 mg/day	20 d.	X	Hueper 1944
7-Et-2-Me- undecyl-4	Rat	25 mg/kg/day	30 d.	0	Smyth 1941
3, 9-diEt- tridecyl-6	Rat	65 mg/kg/day	30 d.	O	Smyth 1941
SULFATED NONIC	ONIC				
Lauryl EO (3)	Rat	5000 ppm-food	2 yr.	o	Tusing 1962
MISCELLANEOUS	SULFONATI	ES			
Alkane	Rat	$0.1~\mathrm{LD_{50}/day}$	45 d.	O	Garshenin 1963

TABLE 3 - ((Continued)
-------------	-------------

TABLE 3 = (Continued)				E // 1	
Surfactant	Animal	Dose (Note 1)	Duration	Effect (Note 2)	Reference
Lauryl	Rat	5000 ppm-food	2 yr.	O	Tusing 1962
glyceryl ether					
Oleoyl	Rat	20,000 ppm-food	4 mo.	O	Fitzhugh 1948
methyl tauride					
Oleoyl	G. pig	2000 ppm-water	180 d.	O	Woodard 1945
methyl tauride					
Alkyl aryl	G. pig	2000 ppm-water	180 d.	O	Woodard 1945
Butyl phenylphenol	G. pig	2000 ppm-water	180 d.	0	Woodard 1945
Isopropyl-	G. pig	2000 ppm-water	180 d.	0	Woodard 1945
naphthalene		-000	400 1		Waada-1 1045
Lauryl benzoate	G. pig	2000 ppm-water	180 d.	0	Woodard 1945
Dioctyl succinate	Rat	200-900 mg/kg/d	6 mo.	0	Benaglia 1943
Dioctyl succinate	Rabbit	500 mg/kg/d	24 wk.	XX	Benaglia 1943
Dioctyl succinate	Monkey	125 mg/kg/d	24 wk.	O	Benaglia 1943
Dioctyl succinate	Dog	250 mg/kg/d	24 wk.	0	Benaglia 1943
Dioctyl succinate	Rat	5000 ppm-food	2 yr.	0	Fitzhugh 1948
Dioctyl succinate	Rabbit	250 mg/day	5 mo.	0	Hueper 1944 Lorenz 1940
Dioctyl succinate	Mouse	4 mg/day	7 mo.	0	Woodard 1945
Dioctyl succinate	G. pig	2000 ppm-water	180 d.	0	Woodard 1945
NONIONIC					
Stearoyl EO (8)	Hamster	50,000 ppm-food	_	O	Brush 1957
Stearoyl EO (8)	Mouse	50,000 ppm-food		O	Brush 1957
Stearoyl EO (8)	Dog	50,000 ppm-food		O	Brush 1957
Stearoyl EO (8)	Rat	250,000 ppm-food	21 wk.	x	Eagle 1956
Stearoyl EO (8)	Hamster	50,000 ppm-food	39 wk.	XX	Eagle 1956
Stearoyl EO (8)	Rat	20,000 ppm-food	2 yr.	O	Fitzhugh 1959
Stearoyl EO (8)	Dog	50,000 ppm-food	20 mo.	O	Fitzhugh 1959
Stearoyl EO (8)	Rat	110,000 ppm-food	1 yr.	O	Graham 1954
Stearoyl EO (8)	Rat	110,000 ppm-food	32 wk.	O	Graham 1955
Stearoyl EO (8)	Rat	250,000 ppm-food	59-70 d.	X	Harris 1951a
Stearoyl EO (8)	Hamster	50,000 ppm-food	68 d.	X	Harris 1951b
Stearoyl EO (8)	Rat	100,000 ppm-food	500 d.	O	Krehl 1955
Stearoyl EO (8)	Cat	200,000 ppm-food	1 yr.	O	Krehl 1955
Stearoyl EO (8)	Rat	200,000 ppm-food	2 yr.	O	Oser 1956
Stearoyl EO (8)	Rat	250,000 ppm-food	21 wk.	XX	Poling 1956
Stearoyl EO (8)	Hamster	50,000 ppm-food	39 wk.	XX	Poling 1956
Stearoyl EO (8)	Hamster	150,000 ppm-food	_	X	Schweigert 1950
Stearoyl EO (8)	Hamster	150,000 ppm-food	2-10 wk.	X	Wang 1950
Stearoyl EO (38)	Hamster	50,000 ppm-food		X	Brush 1957
Stearoyl EO (38)	Mouse	50,000 ppm-food	-	O	Brush 1957
Stearoyl EO (38)	Dog	50,000 ppm-food	_	0	Brush 1957
Lauryl	Rat	3,400 ppm-food	4 wk.	O	Grubb 1960
alcohol EO (7)					
Lauryl	Rat	390 mg/kg/day	22 d.	О	Berberian 1965
alcohol EO (9)					

TABLE 3 - (Continued)

Surfactant	Animal	Dose (Note 1)	Duration	Effect (Note 2)	Reference
Oleyl alcohol EO (20)	Rat	70 mg/kg/day	6 mo.	0	Sweeney 1953
Fatty acyl sorbitan EO (20)	Hamster	50,000 ppm-food	_	X	Brush 1957
Fatty acyl sorbitan EO (20)	Mouse	50,000 ppm-food	_	0	Brush 1957
Fatty acyl sorbitan EO (20)	Dog	50,000 ppm-food	_	O	Brush 1957
Fatty acyl sorbitan EO (20)	Hamster	50,000 ppm-food	39 wk.	XX	Eagle 1956
Fatty acyl sorbitan EO (20)	Mouse	100,000 ppm-food	26 wk.	0	Ewing 1964
Fatty acyl sorbitan EO (20)	Mouse	100,000 ppm-food	22 mo.	0	Ewing 1964
Fatty acyl sorbitan EO (20)	Rat	20,000 ppm-food	2 yr.	0	Fitzhugh 1959
Fatty acyl sorbitan EO (20)	Dog	50,000 ppm-food	20 mo.	O	Fitzhugh 1959
Fatty acyl sorbitan EO (20)	Rat	250,000 ppm-food	59-70 d.	x	Harris 1951a
Fatty acyl sorbitan EO (20)	Hamster	50,000 ppm-food	68 d.	x	Harris 1951b
Fatty acyl sorbitan EO (20)	Rabbit	20,000 ppm-food	2 yr.	О	Krantz 1951
Fatty acyl sorbitan EO (20)	Monkey	1000 mg/day	10 mo.	0	Krantz 1951
Fatty acyl sorbitan EO (20)	Rat	200,000 ppm-food	2 yr.	О	Oser 1956
Fatty acyl sorbitan EO (20)	Rat	250,000 ppm-food	21 wk.	XX	Poling 1956
Fatty acyl sorbitan EO (20)	Hamster	50,000 ppm-food	39 wk.	XX	Poling 1956
Octyl phenol EO	Rat	10,000 ppm-food	4 mo.	O	Fitzhugh 1948
Octyl phenol EO (40)	Rat	14,000 ppm-food	2 yr.	0	Larson 1963
Octyl phenol EO (40)	Dog	50,000 ppm-food	3 mo.	0	Larson 1963
Alkylphenol EO	Rabbit	250 mg/day	5 mo.	0	Hueper 1944
Alkylphenol EO	G. pig .	2000 ppm-water	180 d.	0	Woodard 1945
Fatty acyl sucrose	Rat	100,000 ppm-food	2 yr.	0	Chiancone 1963
Fatty acyl sucrose	Rat	2000 mg/kg/day	90 d.	0	Hara 1960

TABLE 3 — (Continued)

Animal	Dose (Note 1)	Duration	Effect (Note 2)	Reference
Rat	2500 ppm-food	2 yr.	0	Alfredson 1951
Dog	1200 ppm-food	15 wk.	o	Alfredson 1951
Rat	2500 ppm-food	2 yr.	0	Finnegan 1954
Dog	500 ppm-food	1 yr.	o	Finnegan 1954
Rat	625 ppm-food	2 yr.	x	Fitzhugh 1948
Rabbit	100 mg/day	12 d.	xx	Hueper 1944
Rat	25 mg/kg/d	2 yr.	o	Shelanski 1949
G. pig	25 mg/kg/d	1 yr.	0	Shelanski 1949
Rat	•	60 d.	o	Nelson 1946
Dog	-,	90 d.	o	Nelson 1946
Ü	2,	25 wk	0	Vivino 1946
	-,			Warren 1942
Rabbit	2,			
G. pig	2000 ppm-water	40 d.	XX	Woodard 1945
GENTS"				
Rats	100 mg/kg/d	2 yr. 2 yr.	o o	Petri 1961 Petri 1961
	Rat Dog Rat Dog Rat Rabbit Rat G. pig Rat Dog Rat Cog Rat Rabbit G. pig GENTS"	Rat 2500 ppm-food Dog 1200 ppm-food Rat 2500 ppm-food Dog 500 ppm-food Rat 625 ppm-food Rabbit 100 mg/day Rat 25 mg/kg/d G. pig 25 mg/kg/d Rat 60 mg/kg/d Dog 20 mg/kg/d Rat 20 mg/kg/d G. pig 2000 ppm-water GENTS" Rats 100 mg/kg/d	Rat 2500 ppm-food 2 yr. Dog 1200 ppm-food 15 wk. Rat 2500 ppm-food 2 yr. Dog 500 ppm-food 1 yr. Rat 625 ppm-food 2 yr. Rabbit 100 mg/day 12 d. Rat 25 mg/kg/d 2 yr. G. pig 25 mg/kg/d 1 yr. Rat 60 mg/kg/d 60 d. Dog 20 mg/kg/d 90 d. Rat 20 mg/kg/d 4 wk. G. pig 2000 ppm-water 40 d. GENTS" Rats 100 mg/kg/d 2 yr.	Animal Dose (Note 1) Duration (Note 2) Rat 2500 ppm-food 2 yr. 0 Dog 1200 ppm-food 15 wk. 0 Rat 2500 ppm-food 2 yr. 0 Dog 500 ppm-food 1 yr. 0 Rat 625 ppm-food 2 yr. xx Rat 100 mg/day 12 d. xx Rat 25 mg/kg/d 2 yr. 0 G. pig 25 mg/kg/d 1 yr. 0 Rat 60 mg/kg/d 60 d. 0 Dog 20 mg/kg/d 90 d. 0 Rat 20 mg/kg/d 4 wk. 0 Rabbit 100 mg/kg/d 4 wk. 0 G. pig 2000 ppm-water 40 d. xx

- Note 1. Many of these investigators have reported results at several feeding levels. Generally those tabulated here are the highest at which no significant effects were observed. If significant effects were observed at all levels fed, the lowest of these is given.
- Note 2. o = no effects, or very slight; x = noticeable effect, e.g., poor growth rate; xx = some deaths, significantly more than in control group.
- Note 3. Exact chemical structure often unspecified; probably usually derived from kerosene or tetrapropylene.
- Note 4. ABS + lauryl sulfate mixture.
- Note 5. Detergent formulation containing 20% surfactant.
- Note 6. Ammonium and pyridinium.

TABLE 4
Surfactant Feeding Studies — Fertility and Reproduction

Surfactant	Animal	Dose	enerations (Note 1)	Effect (Note 1)	Reference
ALKYLBENZENE	SULFONA	ATE			
tpABS	Rat	100 ppm-wate	r 3	o	Bornmann 1963
tpABS	Rat	5000 ppm-foo	d 3	0	Tusing 1960
LAS	Rat	100 ppm-wate	r 3	o	Bornmann 1963
"alkylaryl"	Rat	5000 ppm-foo	d 2	0	Freeman 1945
OTHER ANIONIC					
Lauryl EO (3) sulfate	Rat	1000 ppm-foo	d 3	0	Tusing 1962
Lauryl glyceryl sulfonate	Rat	1000 ppm-foo	d 3	o	Tusing 1962
NONIONIC		,			
Stearoyl EO (8)	Rat	200,000 ppm-food	d 3	o	Oser 1956
Stearoyl EO (40)	Rat	200,000 ppm-food	d 3	o	Oser 1956
Fatty acyl sorbitan EO (20)	Rat)	20,000 ppm-food	d 3	0	Krantz 1951
Fatty acyl sorbitan EO (20)	Rat)	200,000 ppm-food	1 3	0	Oser 1956
Fatty acyl sucrose	Rat		2	o	Colson 1964
CATIONIC					
Quaternary	Rat	25 mg/kg/c	1 3	0	Shelansky 1949
Quaternary pyridinium	Rat	20 mg/c		o	Vivino 1946
"VARIOUS DETER	RGENTS"				
	G. pig	20,000 ppm-wate	r -	M	Petri 1961

Note 1. 3-o: Parents fertile, F₁ fertile, F₂ normal; 2-o: Parents fertile, F₁ normal; M: Frequent miscarriage.

TABLE 5
Surfactants and Infection

Infective Agent	Animal	Surfactant	Surfactant Dose	Result (Note 1)	Reference
$\begin{cases} E. \ coli \\ \text{plus} \end{cases}$	G. pig	Hostapon	66-100 mg/kg/d	土	Borneff 1957
Strep. mucosus	G. pig	Hostapon	325 mg/kg/d	±	Borneff 1957
Salmonella typhi-murium	Mouse	Pril-flüssig	0.2 mg/day plus 330 ppm-water	O	Borneff 1957
Tubercle bacillus	G. pig	Hostapon	15 mg/kg/d	o	Borneff 1959b
Tubercle bacillus	G. pig	Pril-flüssig	0.25 mg/kg/d	o	Borneff 1959b
Encephalomyelitis (Theiler-virus)	Mouse	tpABS	12.5-125 mg/kg/d	i o	Borneff 1962
Encephalomyelitis (Theiler-virus)	Mouse	Lauryl sulfate	12.5-125 mg/kg/d	i o	Borneff 1962

Note 1. o = No significant difference between surfactant fed animals and controls. $\pm = Increased$ morbidity of surfactant-fed animals, but not necessarily linked to infection-promotion by surfactant.

TABLE 6
Surfactants and Gastro-Intestinal Absorption

Surfactant	Surfactant Dose	Material Absorbed	(Note 1) Result	Reference			
ANIONIC							
Alkylbenzene Sulfonate		Mg++ion	+	Opitz 1961			
Alkylbenzene Sulfonate		Anionic dyes	+, o	Bornmann 1962			
Alkylbenzene Sulfonate	20,000 ppm	Cationic dye	*****	Bornmann 1962			
Lauryl sulfate		Glucose	+	Kozlik 1956			
Lauryl sulfate	25,000 ppm	Glucose	+	Mosinger 1956			
Lauryl sulfate		Mg++ion	+	Kozlik 1955			
Lauryl sulfate		Calcium		Webling 1965			
Lauryl sulfate		Iron	О	Brise 1962			
Lauryl sulfate		Vitamin A ester	+, -	Fuchs 1954			
Lauryl sulfate (Note 2)		Anionic dye	+	Lish 1959			
Lauryl sulfate (Note 2)		Cationic dye	О	Lish 1959			
Lauryl sulfate	100 ppm	Cationic dyes	+	Appel 1957			
Lauryl sulfate		Strophanthin	+	Eybl 1957			
Lauryl sulfate	10 mg	Strophanthin	+	Krause 1955			
Dioctyl sulfosuccinate	250 mg/day	Cholesterol	<u>.</u>	Hueper 1944			
Dioctyl sulfosuccinate	_ = 0 111B/ Guy	Iron	0	Brise 1962			
Various Anionics		Glucose	_	Woodard 1945			
NONIONIC		Olacoso		110000110110			
Dodecyl alcohol EO	500	Disitalia	,	Nakano 1953b			
2	500 ppm	Digitalis	+	Nakano 1953a			
Oleyl alcohol EO		Strophanthin, digitoxin	_				
Alkylphenol EO	250 mg/day	Cholesterol	- -	Hueper 1944			
Octylphenol-CH ₂ O EO	600 mg/kg	Corn oil	_	Tidwell 1965			
Fatty-acyl sorbitan EO (20)	4500 mg/day	Fats, Vitamin A	+	Jones 1948			
Fatty-acyl sorbitan EO (20)	3000 mg/day	Cholesterol	+	Kellner 1948			
	/500 mmm	Stronbonthin	,	Nakano 1953a			
Fatty-acyl	<500 ppm	Strophanthin	+	Nakalio 1933a			
sorbitan EO (20)	>500	Ctuanhanthin	_	Notes 1052			
Fatty-acyl	>500 ppm	Strophanthin	_	Nakano 1953a			
sorbitan EO (20)	10 000	Diside the		Makana 1052h			
Fatty-acyl	10,000 ppm	Digitalis	+	Nakano 1953b			
sorbitan EO (20)		Τ		D-1 1062			
Fatty-acyl		Iron	0	Brise 1962			
sorbitan EO (20)	50.000	*		34. 11057			
Fatty-acyl	50,000 ppm	Iron	+	Mori 1957			
sorbitan EO (20)	46000 /1	75 ' ''''		0.1 . 10.10			
Fatty-acyl	16,000 mg/d	Penicillin	0	Schwartz 1949			
sorbitan EO (20)							
Fatty-acyl	75,000 ppm	Salicylamide	_	Yamada 1965			
sorbitan EO (20)							
CATIONIC							
Quaternary ammonium		Glucose	_	Nissim 1960			
Note 1. $+=$ Increased absorption. $o = No$ effect. $-=$ Decreased absorption. Note 2. Similar results with dioctyl sulfosuccinate.							

ilar results with dioctyl sulfosuccinate.

- 19 -

REFERENCES

- (Original sources have been consulted except for those with Chemical Abstracts citation included.)
- AASGP (1961) (Association of American Soap and Glycerine Producers). ABS in drinking water in the United States. J. Am. Water Works Assoc. 53 297-300 (1961).
- Adelson (1952), L. and I. Sunshine. Fatal poisoning due to a cationic detergent of the guaternary ammonium compound type. Am. J. Clinical Pathol. 22 656-661 (1952).
- Alfredson (1951), B. V., J. R. Stiefel, F. Thorp, Jr., W. D. Baten and M. L. Gray. Toxicity studies on alkyldimethylbenzylammonium chloride in rats and dogs. *J. Am. Pharm. Assoc.* 40 263-267 (1951); CA 45 6755a (1951).
- Appel (1957), W., H. Schievelbein and E. Werle. The influence of sodium dodecyl sulfate on the permeability of membranes and intestinal absorption. *Arzneimittel-Forsch*, 7 742-745 (1957); CA 52 5665a (1958).
- Beeson (1953), W. M., T. W. Perry and P. J. Reynolds. The effect of surfactants on the growth rate of swine. J. Animal Sci. 12 619-622 (1953); CA 48 3492b (1954).
- Benaglia (1943), A. E., E. J. Robinson, E. Utley and M. A. Cleverdon. The chronic toxicity of Aerosol OT. J. Ind. Hyg. & Toxicol. 25 175-180 (1943).
- Berberian (1965), D. A., W. G. Gorman, H. P. Drobeck, F. Coulston and R. G. Slighter, Jr. The toxicology and biological properties of Laureth 9 (a polyoxyethylene lauryl ether), a new spermicidal agent. *Toxicol Appl. Pharmacol* 7 206-214 (1965).
- Böhm-Gössl (1965), T. and R. Krüger. Solubilization of 3, 4-benzopyrene by alkylbenzene-sulfonic acids. *Kolloid-Z. Z. Polymer* **206** (1) 65-70 (1965).
- Bolton (1961), W. The effects of supplemental detergents on the digestibility of poultry diets. J. Agr. Sci. 57 (1) 83-86 (1961).
- Borneff (1957), J. Feeding of surface-active substances and effect on infections. Arch. Hyg. Bakteriol. 141 578-595 (1957).
- Borneff (1959a), J. and R. Knerr. Carcinogenic substances in water and soil. I. Theoretical principles, properties, and detection. *Arch. Hyg. Bakteriol.* **143** 390-404 (1959).
- Borneff (1959b), J. Feeding experiments with detergents with special regard to tuberculosis infection. Arch. Hyg. Bakteriol 143 624-633 (1959).
- Borneff (1960), J. Carcinogenic substances in water and soil. IV. Feeding experiments with 3, 4-benzpyrene and detergents. *Arch, Hyg. Bakteriol.* **144** 249-262 (1960).
- Borneff (1962), J. and S. Carlson. Surface active substances and enteral virus infections. *Arch. Hyg. Bakteriol.* **146** 418-429 (1962).
- Borneff (1963), J. Carcinogenic substances in water and soil. XIII. Experiments on feeding mice with 3, 4-benzopyrene, mineral oil and detergents. *Arch. Hyg. Bakteriol.* **147** 28-40 (1963).
- Bornmann (1961), G. and A. Loeser. Acute alkylarylsulfonate action. Fette, Seifen, Anstrichmittel 63 938-940 (1961).
- Bornmann (1962), G. and M. Stanisic. Influence of detergents on the colonic resorption of dyes. Arch. Exptl. Pathol. Pharmakol. 243 420-428 (1962).
- Bornmann (1963), G. and A. Loeser. The biological effects of dodecylbenzenesulfonate surfactants on rats. Fette, Seifen, Anstrichmittel 65 814-824 (1963).
- Brise (1962), H. and L. Hallberg. Iron absorption studies. II. A method for comparative studies on iron absorption in man using two radio iron isotopes. Effect of surface-active agents on iron absorption. *Acta Med. Scand.* 171, Suppl. 376, 47-50 (1962); CA 57 11706e (1962).
- Brodie (1965), B. B., G. J. Cosmides, D. P. Rall. Toxicology and the biomedical sciences. *Science* **148** 1547-1554 (1965).
- Brush (1957), M. K., J. R. McCoy, H. L. Rosenthal, L. A. Stauber and J. B. Allison. The addition of nonionic surface-active agents of the polyoxyethylene type to the diet of the hamster, the mouse, and the dog. J. Nutrition 62 601-619 (1957); CA 52 3947a (1958).
- Cabejszek (1963), I., M. Rybak and B. Styczynski. Tolerance to sulfapol-50 in water. Roczniki Panstwowego Zakladu Hig. 14 (4) 307-316 (1963) CA 60 6121c (1964).

- Chiancone (1963), F. M., M. Mosinger, R. Tudisco and M. Roussos. Physiological studies on sucrogylcerides. *Ann. Fals. Expert. Chim.* **56** (656-657) 193-220 (1963); CA **60** 8393c (1964).
- Colson (1964), R. Sucrose esters and sucroglycerides in cosmetics, pharmaceuticals, food and agricultural industries. 4th World Surfactant Congress, Brussels, Paper C III 18 (1964).
- Culver (1951), P. J., C. S. Wilcox, C. M. Jones and R. S. Rose, Jr. Intermediary metabolism of certain polyoxyethylene derivatives in man. I. Recovery of the polyoxyethylene moiety from urine and feces following ingestion of polyoxyethylene (20) sorbitan monoöleate and polyoxyethylene (40) monostearate. J. Pharmacol. Exptl. Therap. 103 377-381 (1951); CA 46 2607i (1952).
- Della Porta (1960), G., P. Shubik, K. Dammert and B. Terracini. Role of polyoxyethylene sorbitan monostearate in skin carcinogenesis in mice. *J. Natl. Cancer Inst.* **25** 607-625 (1960).
- Drachev (1965), S. M., A. A. Bylinkina and V. F. Garshenin. The character and significance of surface-active agents in water. Sb Vysoke Skoly Chem.-Technol. Praze, Technol. Vody 8(1), 161-166 (1965); CA 64 4789h (1966).
- Eagle (1956), E. and C. E. Poling. The oral toxicity and pathology of polyoxyethylene derivatives in rats and hamsters. *Food Research* 21 348-361 (1956).
- Epstein (1939), S., A. H. Throndson, W. Dock and M. L. Tainter. Possible deleterious effects of using soap substitutes in dentrifices. J. Am. Dental Assoc. 26 (9) 1461-1471 (1939).
- Ewing (1964), K. L. and O. E. Tauber. Blood chemistry changes in mice fed high levels of polyoxyethylene sorbitan derivatives. *Toxicol. Appl. Pharmacol.* 6 442-446 (1964).
- Ewing (1965), K. L. and O. E. Tauber. Hematologic picture of mice during chronic ingestion of high levels of polyoxyethylene sorbitan derivatives. *Toxicol. Appl. Pharmacol.* 7 320-328 (1965).
- Eybl (1957), V. The influence of detergents (wetting agents) on the resorption from the digestive tract in warm-blooded animals. *Pharmazie* 12 30-33 (1957); CA 51 10743f (1957).
- Finnegan (1953), J. K. and J. B. Dienna. Toxicological observations on certain surface-active agents. *Proc. Sci. Sec. Toilet Goods Assoc.* No. **20** 16-19 (1953).
- Finnegan (1954), J. K. and J. B. Dienna. Toxicities of quaternaries. Soap & Chem. Specs. 30 147...175 (1954).
- Fitzhugh (1948), O. G. and A. A. Nelson. Chronic oral toxicities of surface-active agents. J. Am. Pharm. Assoc. 37 (1) 29-32 (1948).
- Fitzhugh (1959), O. G., A. R. Bourke, A. A. Nelson and J. P. Frawley. Chronic oral toxicities of four stearic acid emulsifiers. *Toxicol. Appl. Pharmacol.* 1 (3) 315-331 (1959); CA 53 22513e (1959).
- Fogelson (1944), S. J. and D. E. Shock. Treatment of gastroduodenal ulcerative disease with sodium alkyl sulfate. *Arch. Internal Med.* **73** 212-216 (1944).
- Food Protection Committee (1956). Relation of surface activity to the safety of surfactants in foods. Natl. Acad. Sci., Natl. Research Council Publ. No. 463, 10 pp. (1956).
- Freeman (1945), S., M. W. Burrill, T. -W. Li and A. C. Ivy. Enzyme inhibitory action of an alkyl aryl sulfonate and studies of its toxicity when ingested by rats, dogs and humans. *Gastroenterology* 4 332-343 (1945).
- Fuchs (1954), B., F. J. Ingelfinger and M. Ellis. The effect of detergent on intestinal digestion. Gastroenterology 27 802-810 (1954); CA 50 1189a (1956).
- Garshenin (1963), V. F. Admissible threshold concentrations of alkylbenzenesulfonate and alkane sulfonate in water basins. *Maslob.-Zhir. Prom.* **29** (10) 20-23 (1963); CA **60** 6617h (1964).
- Gershenfeld (1941), L. and B. Witlin. Surface tension reducents in bactericidal solutions: their in vitro and in vivo efficiencies. Am. J. Pharm. 113 215-236 (1941).
- Glassman (1948), H. N. Surface-active agents and their application in bacteriology. *Bact. Revs.* 12 105-148 (1948).
- Glassman (1950), H. N. Interaction of surface-active agents and proteins. Ann. N. Y. Acad. Sci. 53 91-104 (1950).
- Graham (1954), W. D., H. Teed and H. C. Grice. Chronic toxicity of bread additives to rats. J. Pharm. and Pharmacol. 6 534-545 (1954).

- Graham (1955), W. D. and H. C. Grice. Chronic toxicity of bread additives to rats. II. J. Pharm. and Pharmacol. 7 126-134 (1955).
- Griffith (1964), J. F. Interlaboratory variations in the determination of acute oral LD₅₀ Toxicol. Appl. Pharmacol. 6 (6) 726-730 (1964).
- Grubb (1960), T. C., L. C. Dick and M. Oser. Toxicity of polyoxyethylene dodecanol. *Toxicol. Appl. Pharmacol.* 2 133-143 (1960).
- Guerritore (1959), D. Effects of detergents on the infectivity of extracts of Rous sarcoma. Z. Krebsforsch 63 142-148 (1959); CA 54 21486b (1960).
- Hall (1950), G. C., Jr. Pulmonary toxicity of wetting agents dispersed as aerosols. Am. J. Diseases Children 80 408-412 (1950).
- Hara (1960), S., et al. Toxicity of fatty acid sugar esters. *Tokyo Ika Daiki Zasshi* **18** (3) 967-978 (1960); CA **62** 2166c (1965).
- Harris (1951a;b), R. S., H. Sherman and W. W. Jetter. Nutritional and pathological effects of sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, polyoxyethylene monolaurate, and polyoxyethylene monstearate when fed to rats; hamsters. *Arch Biochem. Biophys.* 34 249-258 (1951); ibid. 259-265; CA 46 5204d;f.
- Hatton (1940), E. H., L. S. Fosdick and J. Calandra. Toxicity and rubefacient action of sulfated higher alcohols. *J. Dental Research* 19 87-92 (1940).
- Havermann (1954), H. and H. Rüter. Experiments on the influence of surfactants in swine feeding. *Arch Tierernähr. Beih.* **5** 60-76 (1954).
- Havermann (1957), H. and W. Hartfiel. Effect of a surface-active alkyl polyglycol ether on calcification in chicks in the presence of vitamin D₃. Arch. Geflügelk. **21** 1-15 (1957); CA **52** 16508d (1958).
- Hine (1953), C. H., H. H. Anderson, I. Finley and J. G. Moore. Studies on the toxicity of two alkyl aryl sulfonates. J. Am. Pharm. Assoc. 42 (8) 489-495 (1953).
- Hodes (1960), M. E., A. K. Warren and C. G. Palmer. Inhibition of Ehrlich ascites tumor growth by surface-active agents. *Nature* **188** 157-158 (1960).
- Hopper (1949), S. H., H. R. Hulpieu and V. V. Cole. Some toxicological properties of surface active agents. J. Am. Pharm. Assoc. 38 (8) 428-432 (1949).
- Hueper (1944), W. C. The therapy and the prevention of degenerative vascular diseases. II. The effects of several detergents on experimental cholesterol atheromatosis of rabbits. *Arch. Path.* 38 381-391 (1944).
- Jones (1948), C. M., P. J. Culver, G. D. Drummey and A. E. Ryan. Modification of fat absorption in the digestive tract by the use of an emulsifying agent. *Ann. Internal Med.* 29 1-10 (1948).
- Kay (1965), J. H., F. E. Kohn and J. C. Calandra. Subacute oral toxicity of a biodegradable LAS. *Toxicol. Appl. Pharmacol.* **7** 812-818 (1965).
- Kellner (1948), A., J. W. Correll and A. T. Ladd. Effect of polyoxyalkylenesorbitan monoöleate (Tween 80) on blood cholesterol and atherosclerosis in cholesterol-fed rabbits. *Proc. Soc. Exptl. Biol. Med.* 67 25-27 (1948).
- Keyworth (1956), C. M. Recent developments in the use of fatty-acid esters and ethers as emulsifying and surface-active agents in foods. Congr. mondial detergence et prods. tensio-actifs. 1er, Paris 1954 3 1086-1090 (1956).
- Kirsner (1944), J. B. and R. A. Wolff. Effect of sodium alkyl sulfate on the peptic activity of the gastric contents and on the healing of gastric ulcers in man. *Gastroenterology* 2 93-101 (1944).
- Knauth (1964), H. Toxicity and degradation of detergents in sewage. Wasserwirtsch. Wassertech. 14 70-74 (1964).
- Kozlik (1955), V. and V. Eybl. The influence of detergents (saponates) on the resorption from the digestive tract in warm-blooded animals. I. Magnesium narcosis after peroral administration of magnesium sulfate and sodium dodecyl sulfate. *Pharmazie* 10 477-480 (1955); CA 51 1460e (1957).
- Kozlik (1956), V. and B. Mosinger. The influence of detergents (saponates) on the resorption from the digestive tract of warm-blooded animals. II. The influence of sodium lauryl sulfate on glucose resorption from the digestive tract. *Pharmazie* 11 22-24 (1956); CA 51 608h (1957).

- Krantz (1951), J. C., Jr., P. J. Culver, C. J. Carr and C. M. Jones. Sugar alcohols. XXVIII. Toxicologic, pharmacodynamic and clinical observations on Tween 80. Bull., School of Med., Univ. of Maryland, 36 48-56 (1951).
- Krause (1955), D. Facilitation and safeguarding of g-strophanthin by sodium lauryl sulfate. Arzneimittel-Forsch. 5 428-432 (1955); CA 49 16233f (1955).
- Krehl (1955), W. A., G. R. Cowgill and A. D. Whedon. Nondeleterious effects of polyoxyethylene esters in the nutrition of rats and cats. *J. Nutrition* **55** 35-61 (1955).
- Krüger (1960), R. Influence of detergents on water management. Seifen-Öle-Fette-Wachse 86 289-292 (1960).
- Larson (1963), P. S., J. F. Borzelleca, E. R. Bowman, E. M. Crawford, R. B. Smith, Jr. and G. R. Hennigar. Toxicologic studies on a preparation of a p-t-octylphenoxypolyoxyethanol (Triton X-405). *Toxicol. Appl. Pharmacol.* 5 (6) 782-789 (1963).
- Lish (1959), P. M. and J. H. Weikel, Jr. Influence of surfactants on absorption from the colon. *Toxicol. Appl. Pharmacol.* 1 501-504 (1959); CA 54 1751e (1960).
- Lorenz (1940), E., M. B. Shimkin and H. L. Stewart. Preparations of dispersions of carcinogens and hormones with dioctylsulfosuccinate (Aerosol OT). *J. Nat. Cancer Inst.* 1 355-360 (1940).
- Macfarlane (1941), M. G. and B. C. J. G. Knight. The biochemistry of bacterial toxins. I. The lecithinase activity of *Cl. welchii* toxins. *Biochem. J.* 35 884-902 (1941).
- Ministry of Housing and Local Government (1956). Report of the committee on synthetic detergents. H. M. Stationery Office, London, 1956, 66 pp.
- Mori (1957), H. D., P. A. Barker, D. S. Juras and R. A. Wissler. Mechanism of increased iron absorption in hamsters fed Tween 20. Lab Invest. 6 421-446 (1957).
- Mosinger (1956), B. and V. Kozlik. The influence of detergents (saponates) on the resorption from the digestive tract of warm-blooded animals. III. The influence of sodium lauryl sulfate on the resorption of glucose from the gut. *Pharmazie* 11 539-542 (1956); CA 51 1460g (1957).
- Nakano (1953a), Y. Effect of some surface-active agents upon the absorption of digitalis preparation administered per stomach in frogs. *Folia Pharmacol. Japon.* **49**, No. 1, 1-10 (1953); CA **47** 7102i (1953).
- Nakano (1953b), Y. The significance of surface activity upon the absorption of digitalis preparations administered per stomach. *Folia Pharmacol. Japon.* **49** No. 1, 31-39 (1953); CA **47** 7103b (1953).
- Nelson (1946), J. W. and S. C. Lyster. Toxicity of myristyl-γ-picolinium chloride. J. Am. Pharm. Assoc. 35 89-94 (1946); CA 40 3530⁴ (1946)
- Ney (1954), L. F. and G. W. Newell. The effect of a sodium alkyl aryl sulfonate detergent on the growth of chicks. *Poultry Science* 33 (2) 297-299 (1954).
- Nissim (1960), J. A. Reduction of the intestinal absorption of glucose, methionine and sodium butyrate by the cation trimethylhexadecylammonium. *Nature* **187** 308-310 (1960); CA **56** 1968d (1962).
- Okahara (1963), K., Y. Kurayuki, M. Iseki, S. Taniguchi and A. Yamada. Pharmacology of alkylbenzenesulfonate. *Shokuhin Eiseigaku Zasshi* 4 15-31 (1963); CA 59 14478b (1963).
- Olson (1962), K. J., R. W. Dupree, E. T. Plomer and V. K. Rowe. Toxicological properties of several commercially available surfactants. *J. Soc. Cosmetic Chemists* 13 469-479 (1962).
- Opdyke (1964), D. L., F. H. Snyder and H. L. Rubenkoenig. Toxicological studies on household synthetic detergents. II. Effects on the skin and eyes. *Toxicol. Appl. Pharmacol.* 6 141-146 (1964).
- Opitz (1961), K., G. Bornmann and A. Loeser. Possibility of influencing the resorption of magnesium. *Arzneimittel-Forsch* 11 1066-1067 (1961)
- Oser (1956), B. L. and M. Oser. Nutritional studies on rats on diets containing high levels of partial ester emulsifiers. I. Growth and food utilization. II. Reproduction and lactation. III. Clinical and metabolic. IV. Mortality and pathology. J. Nutrition 60 (3) 317-389 (1956), ibid 60 (4)489-505 (1956), ibid 61 (1)149-166 (1957), ibid 61 (2) 235-252 (1957); CA 51 13049c (1957).
- Oser (1965), B. L. and K. Morgareidge. Toxicologic studies with branched and linear ABS in rats. *Toxicol. Appl. Pharmacol.* **7** 819-825 (1965).

- Pannel (1955), L. The effect of surface-active agents on the toxicity of *Pasteurella pestis* lysates. J. Infectious Diseases 96 54-56 (1955).
- Paynter (1960), O. E. and R. J. Weir, Jr. Chronic toxicity of Santomerse No. 3 from olefin (dodecylbenzene sodium sulfonate). *Toxicol. Appl. Pharmacol.* 2 (6) 641-648 (1960).
- Perry (1953), T. W., W. M. Beeson and B. W. Vosteen. The effect of an antibiotic or a surfactant on the growth and carcass composition of swine. *J. Animal Sci.* 12 310-315 (1953); CA 47 12544g (1953).
- Petri (1961), H. Hygienic-toxicologic evaluation of detergent-containing household cleaners. Gesundheits-Ing. 82 II 50 (1961).
- Poel (1963), W. E. The alimentary tract, a route for carcinogenic exposure. J. Occupational Med. 5 22-33 (1963).
- Poling (1956), C. E., E. Eagle and E. E. Rice. Effects of feeding polyoxyethylene preparations to rats and hamsters. *Food Research* 21 337-347 (1956).
- Pratt (1952), C. D. Partial-ester emulsifier levels in food. Food Technol. 6 425-430 (1952); CA 47 12667e (1953).
- Prudden (1950), J. F. The treatment of chronic ulcerative colitis with sodium hexadecyl sulfate. Gastroenterology 15 426-437 (1950).
- Ringrose (1959), A. T. and E. F. Waller. High level feeding of surface active agents to chicks. Toxicol. Appl. Pharmacol. 1 (6) 548-559 (1959).
- Robeck (1962), G. G., A. R. Bryant and R. L. Woodward. Influence of ABS on the movement of coliforms through water-saturated sandy soils. J. Am. Water Works Assoc. 54 75-82 (1962).
- Saffiotti (1962), U., P. Shubik and D. L. Opdyke. Carcinogenesis tests on alkylbenzenes and ABS. Toxicol. Appl. Pharmacol. 4 763-769 (1962).
- Saffiotti (1963), U. and P. Shubik. Studies on promoting action in skin carcinogenesis. Natl. Cancer Inst. Monograph No. 10, 489-507 (1963).
- Sakabe (1962), H., et al. Health examination of workers exposed to synthetic detergent dusts. *Ind. Health* 8 (8) 21-63 (1962); CA 61 9951b (1964).
- Sanz Ibañez (1964), J., A. T. Jiminez-Castellanos. Effects of alkylbenzene-sulfonate detergents orally administered to rats. Arch. Inst. Farmacol. Exptl. 16(2) 107-113 (1964).
- Schwartz (1949), L., and W. P. Boger. The lack of effect of Tween 80 on the absorption of Al and Na penicillins, J. Lab. Clin. Med. 34 1443-1446 (1949).
- Schweigert (1950), B. S., B. H. McBride and A. J. Carlson. Effect of feeding polyoxyethylene monostearates on growth rate and gross pathology of weanling hamsters. *Proc. Soc. Exptl. Biol. Med.* **73** 427-432 (1950); CA **44** 6498c (1950).
- Setälä (1961), K. Nature and mechanism of tumor promotion in skin carcinogenesis in mice. Acta Unio Internat. contra Cancrum 17 32-41; discussion 41-44 (1961).
- Shelanski (1949), H. A. Toxicity of quaternaries. Soap Sanit. Chemicals 25 (2) 125-129, 153 (1949).
- Shinoda (1962), K., K. Ito, K. Yasuda and K. Kinoshita. Amount of sodium alkylbenzene-sulfonate remaining on rinsed tableware and vegetables washed with its aqueous solution. Shokuhin Eiseigaku Zasshi 3 (4) 387-391 (1962); CA 59 8983a (1963).
- Shubik (1958a), P., G. Della Porta and K. Spencer. Studies of the action of polyoxyethylene sorbitan monostearate (Tween 60) in skin carcinogenesis in the mouse. Unpublished communication, 1958.
- Shubik (1958b), P. Carcinogenicity: An author replies. Soap, Perfumery, Cosmetics 31 1166-1167 (1958).
- Smyth (1941), H. F., Jr., J. Seaton and L. Fischer. Some pharmacological properties of the "Tergitol" penetrants. J. Ind. Hyg. Toxicol. 23 478-483 (1941).
- Snyder (1964), F. H., D. L. Opdyke, J. F. Griffith, H. L. Rubenkoenig, T. W. Tusing and O. E. Paynter. Toxicologic studies on household synthetic detergents. *Toxicol. Appl. Pharmacol.* 6 (2) 133-140 (1964).
- Stern (1953), J. R. and J. McGinnis, Comparative growth response of chicks to detergents germicides and penicillin. *Poultry Science* 32 26-28 (1953); CA 47 11370f (1953).
- Sweeney (1953), K. and K. Oster. Toxicity studies of a nonionic detergent. J. Am. Pharm. Assoc. 42 556-560 (1953).

- Tidwell (1965), H. C., W. T. Moore and J. C. McPherson. Effect of Triton ingestion on fat absorption. Proc. Soc. Exp. Biol. Med. 118, 986-988 (1965).
- Treon (1962), J. F. Toxicological aspects of cosmetic formulation a synopsis. Am. Perfumer & Cosmetics 77 (4) 35-41 (1962).
- Treon (1965), J. F. Physiological properties of selected nonionic surfactants. Soap, Perfumery, Cosmetics 38 (1) 47-54 (1965).
- Tusing (1960), T. W., O. E. Paynter and D. L. Opdyke. Chronic toxicity of sodium alkylbenzenesulfonate by food and water administration to rats. *Toxicol. Appl. Pharmacol* 2 464-473 (1960).
- Tusing (1962), T. W., O. E. Paynter, D. L. Opdyke and F. H. Snyder. Toxicologic studies on sodium lauryl glyceryl ether sulfonate and sodium lauryl trioxyethylene sulfate. *Toxicol. Appl. Pharmacol.* 4 402-409 (1962).
- US Food and Drug Administration (1960). Food additives. Polyoxyethylene (20) sorbitan monostearate. Federal Register 26 110-111 (Jan. 6, 1960); CA 55 8411e (1961).
- US Food and Drug Administration (1964a). Chemicals used in washing fruits and vegetables. Federal Register 29 3472 (March 18, 1964).
- US Food and Drug Administration (1964b). Food additives. Poly(oxyethylene) (20) sorbitan tristearate; polysorbate 60 (poly(oxyethylene) (20) sorbitan monostearate); sorbitan monostearate. Federal Register 29 13572-13573 Oct. 2, (1964); CA 61 16696f (1964).
- US Food and Drug Administration (1964c). Food additives. Polysorbate 60 (poly(oxyethylene) (20) sorbitan monostearate). Federal Register 29 14109 (Oct. 14, 1964); CA 61 16696e (1964).
- US Public Health Service (1962). Drinking water standards 1962 alkylbenzene sulfonate. Public Health Service Publication No. 956, pp. 22-25 (1962).
- Vivino (1946), A. E. and T. Koppanyi. Effect of continued oral administration of lauric and myristic acid ester of colaminoformylmethylpyridinium chloride (Emulsept) to the albino rat. J. Am. Pharm. Assoc. 35 169-173 (1946).
- Wang (1950), H., B. H. McBride and B. S. Schweigert. Histological manifestations of feeding polyoxyethylene monostearates to weanling hamsters. Proc. Soc. Exptl. Biol. Med. 75 342-348 (1950); CA 45 1660b (1951).
- Warren (1942), M. R., T. J. Becker, D. G. Marsh and R. S. Shelton. Pharmacological and toxicological studies on cetylpyridinium chloride. *J. Pharmacol.* 74 401-408 (1942).
- Webling (1965), D. D. and E. S. Holdsworth. The effect of bile, bile acids, and detergents on calcium absorption in the chick. *Biochem. J.* 97 408-421 (1965); CA 63 13756e (1965).
- Wedell (1964), H. Drying-on surfactants on porcelain surfaces. 4th World Surfactant Congress, Brussels. Paper C II 11 (1964).
- Woodard (1945), G. and H. O. Calvery. Toxicological properties of surface active agents. Proc. Sci. Sect. Toilet Goods Assn., No. 3, 1-4 (1945).
- Yamada (1965), H. and R. Yamamoto. Biopharmaceutical studies on factors affecting rate of absorption of drugs. I. Absorption of salicylamide in micellar solution. *Chem. Pharm. Bull.* 13(11) 1279-1284 (1965); CA 64 6411b (1966).