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INTRODUCTION

Fatty alcohols are common ingredients of many personal care products (PCP) and cleaning agents; 
they have surfactant qualities and are frequently used as their ethoxylates. Typically, they are 
disposed of down the drain. Previous studies (e.g. Mudge et al., 2010, 2012) on the fate of fatty 
alcohols passing through wastewater treatment plants (WWTPs) have indicated that the 
compounds in the in�uent were settled out and rapidly degraded such that the e�uents had fatty 
alcohols principally derived from de novo bacterial synthesis. These discharges also made small 
contributions to the receiving waters which were dominated by terrestrial plant and algal 
compounds. The work reported here was undertaken to widen both the geographical range of the 
studies and the di�erent technologies that are used in the WWTPs. 

North America has been divided into 15 Ecological Regions ranging from the high arctic to tropical 
wet forests; these were proposed by Omernik (1987) and developed by the US EPA 
(http://www.epa.gov/wed/pages/ecoregions.htm). Although there are 15 regions, the bulk of the 
USA is encompassed by just six with two of these having restricted ranges along the west coast 
(Figure 1). The previous USA study conducted in Luray, Virginia was in Ecological Region 8.0 
(sub-region 8.3, south eastern USA plains), part of the Eastern Temperate Forests (Mudge et al., 
2012). The bulk of the population in the USA live toward the East and West coasts with 
comparatively fewer population centres in the middle.

Three di�erent Eco-regions were chosen for this study:

• the Great Plains (Region 9) and the sampled zone was further sub-classi�ed as region 9.4,
 South Central, Semi-Arid Prairies,
• the Eastern Temperate Forests (Region 8) and the sampled zone is further sub-classi�ed as
 regions 8.1, mixed wooded plains; 8.2, central USA plains, and 8.4, Ozark, Ouachita-
 Appalachian forests, 
• and the Marine West Coast Forests (Region 7) which has no further sub-classi�cation.

It may be hypothesised that the di�erent Eco-regions will have an e�ect on the indigenous �ora 
and lead to di�erent chemical signatures in both the material entering the rivers and streams as 
well as the bacteria in the WWTPs. These di�erences may lead to a change in performance 
between plants in the removal of compounds from the wastewater input and the fate of any 
subsequent discharge into the streams.

WWTP 
Secondary 
Treatment 

Influent 
MGD (litres per day x 

106) 
Population served 

(in thousand) 
Oklahoma Sites    
Winfield (KS) Oxidation Ditch 1.2 (4.6) 12 
Stillwater Activated Sludge 5.4 (20.5) 48 
Edmond (Coffee Creek) Oxidation Ditch 7 (26.6) 84 
Deer Creek RBC & Activated 

Sludge 
15 (57) 82 

Del City SBR 1.5 (5.7) 25 
Ada SBR 2.5 (9.5) 15 
Weatherford Activated Sludge 1 (3.8) 10 
Elk City Lagoon 1.2 (4.6) 12 
Ohio Sites    
East Liverpool RBC 1.7 (6.5) 11 
Alliance Activated Sludge 4.0 (15.2) 23 
Massillon Oxidation Ditch + 

TBF 
14.8 (56.2) 36 

Summit/Stow/Fish Creek Oxidation Ditch 3.5 (13.3) 40 
Strongsville RBC 1.0 (3.8) 15 
French Creek Activated Sludge 5.8 (22.0) 50 
Danville Lagoon 0.1 (0.4) 1.1 
New Bremen Lagoon + TBF 0.8 (3.0) 3.5 
Oregon Sites    
Everett (WA) TBF and Lagoon 13.5 (51.1) 150 
Chehalis (WA) SBR 1.5 (5.7) 9 
Astoria Lagoon 1.6 (6.1) 10 
McMinnville Oxidation Ditch 3 (11.4) 33 
Molalla Lagoon 1.1 (4.2) 8.1 
Silverton  Activated Sludge 1 (3.8) 8.0 
Stayton SBR 1 (3.8) 10 
Corvallis Activated Sludge 6 (22.7) 55 

 

Figure 3. The in�uent �ow measured at the WWTPs compared 
to the population served. The line is a trend line for illustration 
purposes and not a regression line. The two points substantially 
o� the line had signi�cant non-domestic inputs.
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Figure 1. Ecological Regions of North America at level 1. While there 
are 15 regions across the whole continent, there are only six with a 
signi�cant population in the USA. Modi�ed from the USEPA.
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APPROACH

Sampling sites were primarily chosen on the basis of their performance (in compliance) and 
treatment technology. Eight sites with at least four di�erent treatment technologies were chosen in 
each of the three eco-regions - Oxidation Ditch, Activated Sludge, Percolating or Trickling Bed Filters 
(TBF), Lagoons, Rotating Biological Contactor (RBC) and Sequencing Batch Reactor (SBR). Time 
integrated samples of the in�uent, e�uent and sediments downstream of the discharge point were 
collected at each location.

Each sample had an internal standard added, was saponi�ed with KOH and the extracted lipids were 
derivatised with BSTFA to form the TMS - ethers of the fatty alcohols. Details of the methods can be 
found in Mudge et al. (2012).

The fatty alcohols were identi�ed and quanti�ed by GC-MS methods and the stable isotopes of 13C 
and 2H measured with a Thermo Delta V (Mudge et al., 2012). 

The three eco-regions sampled in this survey were 
all di�erent, especially with regard to rainfall. OK was 
hot and dry; OR was cool and wet and OH was in-
between. In the period running up to the sampling 
in OK, there has been a sustained period of drought 
and a reduction in the stream �ows (Figure 4). This 
meant that at some locations, the WWTP liquid dis-
charges made up the majority of the stream �ows 
and so environmental concentrations of compounds 
in the discharge might have been greater than usual.

Figure 4. River �ow conditions relative to the long term 
average. A signi�cant de�cit can be seen in the southern 
states over the sampling period in 2011 (top �gure). Sig-
ni�cant �ows above the norm can be seen in OR during 
the 2012 sampling period. Data from the USGS

The mean fatty alcohol composition for samples 
collected in OK for the INFLUENT, EFFLUENT and 
SEDIMENTS can be seen in Figure 6. Similar traces 
were obtained for such samples in each Eco-region.

The INFLUENT samples had considerable amounts 
of the18 carbon fatty alcohol which was most likely 
produced within the pipe between the drain and 
the WWTP. The composition did not match the 
pro�le of the fatty alcohols used in the catchment 
(e.g. DeLeo et al., 2011) and will be a mixture of the 
products, faecal matter and food waste.

The EFFLUENT had a di�erent pro�le to the in�uent 
with increased amounts of the odd chain bacterial 
markers and the C12 fatty alcohol.

The SEDIMENTS were dominated by the terrestrial 
plant signal (long chain, even carbon numbers) 
together with algal short chain compounds. Notice 
the almost complete loss of the C12 from the 
e�uent. 

RESULTS

Figure 6. The fatty alchols mean pro�les from OK sampling sites 
(n=8)

INFLUENT

EFFLUENT

SEDIMENT

Stable isotope analysis clearly 
demonstrates that the fatty alcohols in 
the in�uent (black circles) have a 
di�erent geochemical signature to the 
same chain length fatty alcohols in the 
e�uent (top left of Figure 7) and these 
are very di�erent from the sediment 
fatty alcohols which are either 
terrestrial (dark green) or algal (light 
green) in origin.

These results are consistent with 
similar studies conducted in Luray, VA 
(Mudge et al., 2012) and the UK 
(Mudge et al., 2010).

Figure 7. The stable isotope cross plot for all fatty alcohols measured in the three 
eco-regions together with the detergent derived fatty alcohols from the Luray 
study (DeLeo et al. 2011; Mudge et al. 2012). The data are colour-coded according 
to their likely source.
 
Dark green circles indicate long chain (C20+) compounds from terrestrial plants 
found in sediment samples. Pale green/yellow circles indicate short chain 
compounds typically from algal synthesis found in sediment samples. Blue circles 
are used for all e�uent compounds. Black circles denote fatty alcohols in in�uent 
samples. Red circles indicate the petroleum derived detergent fatty alcohols from 
the Luray study. Yellow circles are the oleochemical fatty alcohols in detergents 
from the same Luray study. Orange circles are used for detergent derived fatty 
alcohols that have stable isotopic signature that suggests a blending from both 
petrochemical and oleochemical sources. 

Figure 8. A. A scores plot of the fatty alcohol pro�le data from all 
sites and samples as proportions after log10 transformation. The data 
are colour-coded according to their sample type. B. The same data as 
in A but the data are colour-coded according to their location.

If all the fatty alcohol pro�le data are considered 
for the three eco-regions, signi�cant patterns 
emerge. The scores plot from a PCA after log 
transformation can be seen in Figure 8. The data 
are presented according to their sample type in A 
or colour-coded according to their location in B.

The sediment samples tend towards the left of 
the �gure (A) while the in�uent samples tend 
towards the right. The e�uents occupy a more 
central location but are more closely related to 
the in�uents than the sediments. The separation 
is not completely clean as several of the OH 
sediments are intermingled with the e�uents. 
This is due to the unusual relative absence of long 
chain fatty alcohols in these samples.

The score data can also be presented according to 
the Eco-region (B). In this case, it is clear that the 
samples are not clustering together by location 
and that the sample type is the major factor 
controlling the position of the samples in this 
�gure.

Figure 10. The spread of sedimentary fatty alcohol δ2H values 
for the three eco-regions.

Figure 9. Values of δ2H in precipitation across the USA (Redrawn from 
Hoefs, 2009).

The bulk of the WWTP in�uent samples occupy a very narrow range with regard to the δ13C values 
around -31‰. There is a wide spread of δ2H values from -20 to -300‰ although there is not the same 
Eco-region trend as with the terrestrial plant fatty alcohols. The position of these in�uent fatty 
alcohols coincides closely with the values measured for faecal material undertaken as part of the 
initial phase of these investigations. The mean projection of the free and bound faecal fatty alcohols 
was -30 and -200‰ for δ13C and δ2H respectively. The di�erences in the δ2H values may be due to 
Eco-region di�erences that may be ascribed to eating habits (e.g. Liu et al. 2006; Fraser and Meier-
Augenstein 2007; Ehleringer et al. 2008) as the stable isotopic composition of the food consumed in 
the USA is relatively homogeneous or climatic (rainfall) patterns (Figures 9 and 10) or di�erent 
contributions from petrochemical-derived surfactants in detergents and personal care products. 
There is very little overlap between the in�uent stable isotopic signatures and the other samples in 
this cross plot. It may be concluded from this study that:

a. the fatty alcohols entering the WWTPs are degraded within the plant indepedent of the
 secondary treatment type and Eco-region,
b. di�erences in the stable isotopes can be related to the di�erent source materials and location,
c. the fatty alcohol contribution that PCP and detergent products make to the environment via
 WWTPs is negligible.

DISCUSSION
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Figure 2. A lagoon based WWTP system and an oxidation 
ditch in OH 

Table 1. Treatment type at the 24 WWTPs together with their inputs.

Figure 5. An example GC trace of a sediment sample from OK. The trace 
contains both fatty alcohols and several other compound groups.
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